Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pathogens ; 12(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36839422

ABSTRACT

In September 2021, Bagaza virus (BAGV), a member of the Ntaya group from the Flavivirus genus, was detected for the first time in Portugal, in the heart and the brain of a red-legged partridge found dead in a hunting ground in Serpa (Alentejo region; southern Portugal). Here we report the genomic characterization of the full-length sequence of the BAGV detected (BAGV/PT/2021), including phylogenetic reconstructions and spaciotemporal analyses. Phylogenies inferred from nucleotide sequence alignments, complemented with the analysis of amino acid alignments, indicated that the BAGV strain from Portugal is closely related to BAGV strains previously detected in Spain, suggesting a common ancestor that seems to have arrived in the Iberia Peninsula in the late 1990s to early 2000s. In addition, our findings support previous observations that BAGV and Israel turkey meningoencephalitis virus (ITV) belong to the same viral species.

2.
Emerg Infect Dis ; 28(7): 1504-1506, 2022 07.
Article in English | MEDLINE | ID: mdl-35731200

ABSTRACT

Bagaza virus emerged in Spain in 2010 and was not reported in other countries in Europe until 2021, when the virus was detected by molecular methods in a corn bunting and several red-legged partridges in Portugal. Sequencing revealed high similarity between the 2021 strains from Portugal and the 2010 strains from Spain.


Subject(s)
Bird Diseases , Flavivirus Infections , Galliformes , Animals , Animals, Wild/virology , Bird Diseases/epidemiology , Bird Diseases/virology , Flavivirus/classification , Flavivirus/isolation & purification , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Galliformes/virology , Portugal/epidemiology , Spain
3.
Transbound Emerg Dis ; 69(4): 1684-1690, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35366052

ABSTRACT

Myxomatosis is an emergent disease in the Iberian hare (Lepus granatensis). In this species, the disease is caused by a natural recombinant virus (ha-myxoma virus [MYXV]) identified for the first time in 2018 and has since been responsible for a large number of outbreaks in Spain and Portugal. The ha-MYXV, which harbours a 2.8 Kb insert-disrupting gene M009L, can also infect and cause disease in wild and domestic rabbits, despite being less frequently identified in rabbits. During the laboratory investigations of wild leporids found dead in Portugal carried out within the scope of a Nacional Surveillance Plan (Dispatch 4757/17, MAFDR), co-infection events by classic (MYXV) and naturally recombinant (ha-MYXV) strains were detected in both one Iberian hare and one European wild rabbit (Oryctolagus cuniculus algirus). These two cases were initially detected by a multiplex qPCR detection of MYXV and ha-MYXV and subsequently confirmed by conventional PCR and sequencing of the M009L gene, which contains an ha-MYXV-specific insertion. To our knowledge, this is the first documented report of co-infection by classic MYXV and ha-MYXV strains either in Iberian hare or in European wild rabbit. It is also the first report of infection of an Iberian hare by a classic MYXV strain. These findings highlight the continuous evolution of the MYXV and the frequent host range changes that justify the nonstop monitoring of the sanitary condition of wild Leporidae populations in the Iberian Peninsula.


Subject(s)
Coinfection , Hares , Myxoma virus , Animals , Coinfection/epidemiology , Coinfection/veterinary , Host Specificity , Myxoma virus/genetics , Phylogeny , Rabbits
4.
Vaccines (Basel) ; 10(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35334987

ABSTRACT

The recent emergence of a new myxoma virus capable of causing disease in the Iberian hare (Lepus granatensis) has resulted in numerous outbreaks with high mortality leading to the reduction, or even the disappearance, of many local populations of this wild species in the Iberian Peninsula. Currently, the available vaccines that prevent myxomatosis in domestic rabbits caused by classic strains of myxoma virus have not been assessed for use in Iberian hares. The main objective of this study was to evaluate the efficacy of commercial rabbit vaccines in Iberian hares and wild rabbits against the natural recombinant myxoma virus (ha-MYXV), bearing in mind its application in specific scenarios where capture is possible, such as genetic reserves. The study used a limited number of animals (pilot study), 15 Iberian hares and 10 wild rabbits. Hares were vaccinated with Mixohipra-FSA vaccine (Hipra) and Mixohipra-H vaccine (Hipra) using two different doses, and rabbits were vaccinated with the Mixohipra-H vaccine or the Nobivac Myxo-RHD PLUS (MSD Animal Health) using the recommended doses for domestic rabbits. After the vaccination trials, the animals were challenged with a wild type strain of ha-MYXV. The results showed that no protection to ha-MYXV challenge was afforded when a commercial dose of Mixohipra-FSA or Mixohipra-H vaccine was used in hares. However, the application of a higher dose of Mixohipra-FSA vaccine may induce protection and could possibly be used to counteract the accelerated decrease of wild hare populations due to ha-MYXV emergence. The two commercial vaccines (Mixohipra-H and Nobivac Myxo-RHD PLUS) tested in wild rabbits were fully protective against ha-MYXV infection. This knowledge gives more insights into ha-MYXV management in hares and rabbits and emphasises the importance of developing a vaccine capable of protecting wild populations of Iberian hare and wild rabbit towards MYXV and ha-MYXV strains.

5.
Commun Biol ; 5(1): 6, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013546

ABSTRACT

It is unclear whether West Nile virus (WNV) circulates endemically in Portugal. Despite the country's adequate climate for transmission, Portugal has only reported four human WNV infections so far. We performed a review of WNV-related data (1966-2020), explored mosquito (2016-2019) and land type distributions (1992-2019), and used climate data (1981-2019) to estimate WNV transmission suitability in Portugal. Serological and molecular evidence of WNV circulation from animals and vectors was largely restricted to the south. Land type and climate-driven transmission suitability distributions, but not the distribution of WNV-capable vectors, were compatible with the North-South divide present in serological and molecular evidence of WNV circulation. Our study offers a comprehensive, data-informed perspective and review on the past epidemiology, surveillance and climate-driven transmission suitability of WNV in Portugal, highlighting the south as a subregion of importance. Given the recent WNV outbreaks across Europe, our results support a timely change towards local, active surveillance.


Subject(s)
Animal Distribution , Climate , Weather , West Nile Fever/transmission , West Nile virus/isolation & purification , Animals , Culicidae/physiology , Humans , Mosquito Vectors/physiology , Portugal , Seasons , Species Specificity , West Nile virus/physiology
6.
Transbound Emerg Dis ; 69(3): 1030-1045, 2022 May.
Article in English | MEDLINE | ID: mdl-33683820

ABSTRACT

Rabbit haemorrhagic disease (RHD) is a major threat to domestic and wild European rabbits. Presently, in Europe, the disease is caused mainly by Rabbit haemorrhagic disease virus 2 (RHDV2/b or Lagovirus europaeus GI.2), the origin of which is still unclear, as no RHDV2 reservoir hosts were identified. After the RHDV2 emergence in 2010, viral RNA was detected in a few rodent species. Furthermore, RHDV2 was found to cause disease in some hare species resembling the disease in rabbits, evidencing the ability of the virus to cross the species barrier. In this study, through molecular, histopathologic, antigenic and morphological evidences, we demonstrate the presence and replication of RHDV2 in Eurasian badgers (Meles meles) found dead in the district of Santarém, Portugal, between March 2017 and January 2020. In these animals, we further classify the RHDV2 as a Lagovirus europaeus recombinant GI.4P-GI.2. Our results indicate that Meles meles is susceptible to RHDV2, developing systemic infection, and excreting the virus in the faeces. Given the high viral loads seen in several organs and matrices, we believe that transmission to the wild rabbit is likely. Furthermore, transmission electron microscopy data show the presence of calicivirus compatible virions in the nucleus of hepatocytes, which constitutes a paradigm shift for caliciviruses' replication cycle.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Lagomorpha , Lagovirus , Mustelidae , Animals , Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/genetics , Phylogeny , Rabbits
7.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34769480

ABSTRACT

A natural recombinant myxoma virus (referred to as ha-MYXV or MYXV-Tol08/18) emerged in the Iberian hare (Lepus granatensis) and the European rabbit (Oryctolagus cuniculus) in late 2018 and mid-2020, respectively. This new virus is genetically distinct from classic myxoma virus (MYXV) strains that caused myxomatosis in rabbits until then, by acquiring an additional 2.8 Kbp insert within the m009L gene that disrupted it into ORFs m009L-a and m009L-b. To distinguish ha-MYXV from classic MYXV strains, we developed a robust qPCR multiplex technique that combines the amplification of the m000.5L/R duplicated gene, conserved in all myxoma virus strains including ha-MYXV, with the amplification of two other genes targeted by the real-time PCR systems designed during this study, specific either for classic MYXV or ha-MYXV strains. The first system targets the boundaries between ORFs m009L-a and m009L-b, only contiguous in classic strains, while the second amplifies a fragment within gene m060L, only present in recombinant MYXV strains. All amplification reactions were validated and normalized by a fourth PCR system directed to a housekeeping gene (18S rRNA) conserved in eukaryotic organisms, including hares and rabbits. The multiplex PCR (mPCR) technique described here was optimized for Taqman® and Evagreen® systems allowing the detection of as few as nine copies of viral DNA in the sample with an efficiency > 93%. This real-time multiplex is the first fast method available for the differential diagnosis between classic and recombinant MYXV strains, also allowing the detection of co-infections. The system proves to be an essential and effective tool for monitoring the geographical spread of ha-MYXV in the hare and wild rabbit populations, supporting the management of both species in the field.


Subject(s)
Lagomorpha/virology , Myxoma virus , Myxomatosis, Infectious/diagnosis , Real-Time Polymerase Chain Reaction/methods , Animals , Animals, Wild , Diagnosis, Differential , Gene Transfer, Horizontal/genetics , Molecular Typing/methods , Molecular Typing/veterinary , Myxoma virus/classification , Myxoma virus/genetics , Myxomatosis, Infectious/virology , Rabbits , Real-Time Polymerase Chain Reaction/veterinary , Reproducibility of Results , Sensitivity and Specificity , Spain
8.
Cells ; 10(8)2021 08 16.
Article in English | MEDLINE | ID: mdl-34440869

ABSTRACT

Commercial hare and rabbit immortalized cell lines are extremely limited regarding the many species within the lagomorpha order. To overcome this limitation, researchers and technicians must establish primary cell cultures derived from biopsies or embryos. Among all cell types, fibroblasts are plastic and resilient cells, highly convenient for clinical and fundamental research but also for diagnosis, particularly for viral isolation. Here, we describe a fast and cheap method to produce primary fibroblast cell cultures from leporid species, using dispase II, a protease that allows dermal-epidermal separation, followed by a simple enzymatic digestion with trypsin. This method allows for the establishment of an in vitro cell culture system with an excellent viability yield and purity level higher than 85% and enables the maintenance and even immortalization of leporid fibroblastic cells derived from tissues already differentiated.


Subject(s)
Fibroblasts/cytology , Primary Cell Culture/methods , Skin/cytology , Animals , Biomarkers/metabolism , Cell Separation , Cell Survival , Endopeptidases/metabolism , Fibroblasts/metabolism , Lagomorpha , Trypsin/metabolism
9.
Front Microbiol ; 12: 647730, 2021.
Article in English | MEDLINE | ID: mdl-34093464

ABSTRACT

Molecular methods, established in the 1980s, expanded and delivered tools for the detection of vestigial quantities of nucleic acids in biological samples. Nucleotide sequencing of these molecules reveals the identity of the organism it belongs to. However, the implications of such detection are often misinterpreted as pathogenic, even in the absence of corroborating clinical evidence. This is particularly significant in the field of virology where the concepts of commensalism, and other benign or neutral relationships, are still very new. In this manuscript, we review some fundamental microbiological concepts including commensalism, mutualism, pathogenicity, and infection, giving special emphasis to their application in virology, in order to clarify the difference between detection and infection. We also propose a system for the correct attribution of terminology in this context.

10.
Viruses ; 13(4)2021 04 20.
Article in English | MEDLINE | ID: mdl-33924254

ABSTRACT

In late 2019, the first herpesvirus in the genus Lepus, named leporid gammaherpesvirus 5 (LeHV-5) was described. At the time, herpetic typical lesions were observed in hares infected by the myxoma virus, which is known to induce immunosuppression. Though the real impact of LeHV-5 is still poorly understood, since it affects reproduction, it poses an additional threat to the already fragile populations of Iberian hare, demanding prevalence investigations. In this article, we describe the first quantitative molecular method for LeHV-5 detection, using either Taqman or the EvaGreen systems. This method has excellent sensitivity and specificity, it is able to detect 2.1 copies of LeHV-5 DNA and was validated with an internal control targeting the 18S rRNA gene, allowing monitoring extraction and PCR amplification efficiencies.


Subject(s)
Gammaherpesvirinae/isolation & purification , Hares/virology , Herpesviridae Infections , Real-Time Polymerase Chain Reaction/methods , Animals , Herpesviridae Infections/diagnosis , Herpesviridae Infections/veterinary
11.
Transbound Emerg Dis ; 68(4): 2616-2621, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33119958

ABSTRACT

Myxomatosis is an emergent disease in the Iberian hare, having been considered a rabbit disease for decades. Genome sequencing of the strains obtained from Iberian hares with myxomatosis showed these to be distinct from the classical ones that circulated in rabbits since the virus introduction in Europe, in 1952. The main genomic difference in this natural recombinant hare myxoma virus (ha-MYXV) is the presence of an additional 2.8 kb region disrupting the M009L gene and adding a set of genes homologous to the myxoma virus (MYXV) genes M060R, M061R, M064R, M065R and M066R originated in Poxviruses. After the emergence of this recombinant virus (ha-MYXV) in hares, in the summer of 2019, the ha-MYXV was not detected in rabbit surveys, suggesting an apparent species segregation with the MYXV classic strains persistently circulating in rabbits. Recently, a group of six unvaccinated European rabbits (Oryctolagus cuniculus cuniculus) from a backyard rabbitry in South Portugal developed signs of myxomatosis (anorexia, dyspnoea, oedema of eyelids, head, ears, external genitals and anus, and skin myxomas in the base of the ears). Five of them died within 24-48 hr of symptom onset. Molecular analysis revealed that only the recombinant MYXV was present. This is the first documented report of a recombinant hare myxoma virus in farm rabbits associated with high mortality, which increases the concern for the future of both the Iberian hare and wild rabbits and questions the safety of the rabbit industry. This highlights the urgent need to evaluate the efficacy of available vaccines against this new MYXV.


Subject(s)
Myxoma virus , Myxoma , Virus Diseases , Agriculture , Animals , Farms , Myxoma/veterinary , Myxoma virus/genetics , Rabbits , Virus Diseases/veterinary
12.
Animals (Basel) ; 11(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379183

ABSTRACT

Rabbit haemorrhagic disease (RHD) is a highly contagious infectious disease of European wild and domestic rabbits. Rabbit haemorrhagic disease virus (RHDV, GI.1) emerged in 1986 in Europe, rapidly spreading all over the world. Several genotypes of RHDV have been recognised over time, but in 2010, a new virus (RHDV2/RHDVb, GI.2) emerged and progressively replaced the previous RHDV strains, due to the lack of cross-immunity conferred between RHDV and RHDV2. RHDV2 has a high mutation rate, similarly to the other calivirus and recombines with strains of RHDV and non-pathogenic calicivirus (GI.4), ensuring the continuous emergence of new field strains. Although this poses a threat to the already endangered European rabbit species, the available vaccines against RHDV2 and the compliance of biosafety measures seem to be controlling the infection in the rabbit industry Pet rabbits, especially when kept indoor, are considered at lower risk of infections, although RHDV2 and myxoma virus (MYXV) constitute a permanent threat due to transmission via insects. Vaccination against these viruses is therefore recommended every 6 months (myxomatosis) or annually (rabbit haemorrhagic disease). The combined immunization for myxomatosis and RHDV through a commercially available bivalent vaccine with RHDV antigen has been extensively used (Nobivac® Myxo-RHD, MSD, Kenilworth, NJ, USA). This vaccine however does not confer proper protection against the RHDV2, thus the need for a rabbit clinical vaccination protocol update. Here we report a clinical case of hepatitis and alteration of coagulation in a pet rabbit that had been vaccinated with the commercially available bivalent vaccine against RHDV and tested positive to RHDV2 after death. The animal developed a prolonged and atypical disease, compatible with RHD. The virus was identified to be an RHDV2 recombinant strain, with the structural backbone of RHDV2 (GI.2) and the non-structural genes of non-pathogenic-A1 strains (RCV-A1, GI.4). Although confirmation of the etiological agent was only made after death, the clinical signs and analytic data were very suggestive of RHD.

13.
Viruses ; 12(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-33028004

ABSTRACT

In late 2018, an epidemic myxomatosis outbreak emerged on the Iberian Peninsula leading to high mortality in Iberian hare populations. A recombinant Myxoma virus (strains MYXV-Tol and ha-MYXV) was rapidly identified, harbouring a 2.8 kbp insertion containing evolved duplicates of M060L, M061L, M064L, and M065L genes from myxoma virus (MYXV) or other Poxviruses. Since 2017, 1616 rabbits and 125 hares were tested by a qPCR directed to M000.5L/R gene, conserved in MYXV and MYXV-Tol/ha-MYXV strains. A subset of the positive samples (20%) from both species was tested for the insert with MYXV being detected in rabbits and the recombinant MYXV in hares. Recently, three wild rabbits were found dead South of mainland Portugal, showing skin oedema and pulmonary lesions that tested positive for the 2.8 kbp insert. Sequencing analysis showed 100% similarity with the insert sequences described in Iberian hares from Spain. Viral particles were observed in the lungs and eyelids of rabbits by electron microscopy, and isolation in RK13 cells attested virus infectivity. Despite that the analysis of complete genomes may predict the recombinant MYXV strains' ability to infect rabbit, routine analyses showed species segregation for the circulation of MYXV and recombinant MYXV in wild rabbit and in Iberian hares, respectively. This study demonstrates, however, that recombinant MYXV can effectively infect and cause myxomatosis in wild rabbits and domestic rabbits, raising serious concerns for the future of the Iberian wild leporids while emphasises the need for the continuous monitoring of MYXV and recombinant MYXV in both species.


Subject(s)
Genome, Viral , Hares/virology , Myxoma virus/genetics , Myxoma virus/isolation & purification , Rabbits/virology , Animals , Female , Male , Myxomatosis, Infectious/pathology , Myxomatosis, Infectious/virology , Portugal , Spain
14.
PLoS One ; 8(3): e59399, 2013.
Article in English | MEDLINE | ID: mdl-23527182

ABSTRACT

The exposure of wild carnivores to viral pathogens, with emphasis on parvovirus (CPV/FPLV), was assessed based on the molecular screening of tissue samples from 128 hunted or accidentally road-killed animals collected in Portugal from 2008 to 2011, including Egyptian mongoose (Herpestes ichneumon, n = 99), red fox (Vulpes vulpes, n = 19), stone marten (Martes foina, n = 3), common genet (Genetta genetta, n = 3) and Eurasian badger (Meles meles, n = 4). A high prevalence of parvovirus DNA (63%) was detected among all surveyed species, particularly in mongooses (58%) and red foxes (79%), along with the presence of CPV/FPLV circulating antibodies that were identified in 90% of a subset of parvovirus-DNA positive samples. Most specimens were extensively autolysed, restricting macro and microscopic investigations for lesion evaluation. Whenever possible to examine, signs of active disease were not present, supporting the hypothesis that the parvovirus vp2 gene fragments detected by real-time PCR possibly correspond to viral DNA reminiscent from previous infections. The molecular characterization of viruses, based on the analysis of the complete or partial sequence of the vp2 gene, allowed typifying three viral strains of mongoose and four red fox's as feline panleukopenia virus (FPLV) and one stone marten's as newCPV-2b type. The genetic similarity found between the FPLV viruses from free-ranging and captive wild species originated in Portugal and publicly available comparable sequences, suggests a closer genetic relatedness among FPLV circulating in Portugal. Although the clinical and epidemiological significance of infection could not be established, this study evidences that exposure of sympatric wild carnivores to parvovirus is common and geographically widespread, potentially carrying a risk to susceptible populations at the wildlife-domestic interface and to threatened species, such as the wildcat (Felis silvestris) and the critically endangered Iberian lynx (Lynx pardinus).


Subject(s)
Animal Distribution , Carnivora/virology , Disease Susceptibility/veterinary , Feline Panleukopenia Virus/genetics , Herpestidae/virology , Parvoviridae Infections/epidemiology , Phylogeny , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Area Under Curve , Base Sequence , Bayes Theorem , Capsid Proteins/genetics , Models, Genetic , Molecular Sequence Data , Parvoviridae Infections/pathology , Portugal/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , Sequence Alignment , Species Specificity
15.
J Zoo Wildl Med ; 40(2): 354-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19569486

ABSTRACT

Two cases of fatal infection caused by parvovirus in a white tiger (Panthera tigris) and an African lion (Panthera leo) at the Lisbon Zoo (Portugal) are described. Gross findings at necropsy were catharral enteritis in the tiger and severe hemorrhagic enteritis in the lion. Histopathologic examination revealed, in both animals, intestinal crypt necrosis and lymphocyte depletion in the germinal centers of the mesenteric lymph nodes. Bacteriologic examination was negative for common bacterial pathogens, including Salmonella. Amplification of the parvovirus VP2 complete gene was achieved in both cases and sequencing analysis identified these isolates as feline panleukopenia virus (FPLV). The nucleotide sequences obtained from these two viruses were genetically indistinguishable. The phylogenetic analysis of FPLV strains from domestic cats obtained in the Lisbon area revealed the circulation of FPLV strains highly similar to those isolated from the tiger and lion, which strongly suggests that stray cats may have been the source of infection.


Subject(s)
Feline Panleukopenia Virus/isolation & purification , Feline Panleukopenia/mortality , Lions/virology , Tigers/virology , Animals , Animals, Wild/virology , Animals, Zoo/virology , Base Sequence , Cat Diseases/transmission , Cats , DNA, Viral/chemistry , DNA, Viral/genetics , Fatal Outcome , Feline Panleukopenia/pathology , Feline Panleukopenia/transmission , Female , Male , Molecular Sequence Data , Polymerase Chain Reaction/veterinary , Portugal , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...